Human DNA contains more organized information than the Encyclopedia Britannica. If the full text of the encyclopedia were to arrive in computer code from outer space, most people would regard this as proof of the existence of extraterrestrial intelligence. But when seen in nature, it is explained as the workings of random forces. George Sim Johnson

Einstein said, “God does not play dice.” He was right. God plays Scrabble. Philip Gold

For more than fifty years, as scientists have studied the six feet of DNA that’s tightly coiled inside every one of our body’s one hundred trillion cells, they have marveled at how it provides the genetic information necessary to create all of the proteins out of which our bodies are built. In fact, each one of the thirty thousand genes that are embedded in our twenty-three pairs of chromosomes can yield as many as 20,500 different kinds of proteins. The astounding capacity of microscopic DNA to harbor this mountain of information, carefully spelled out in a four-letter chemical alphabet, “vastly exceeds that of any other known system,” said geneticist Michael Denton. In fact, he said the information needed to build the proteins for all the species of organisms that have ever lived—a number estimated to be approximately one thousand million—“could be held in a teaspoon and there would still be room left for all the information in every book ever written.”

What is DNA?
DNA serves as the information storehouse for a finely choreographed manufacturing process in which the right amino acids are linked together with the right bonds in the right sequence to produce the right kind of proteins that fold in the right way to build biological systems. The documentary Unlocking the Mystery of Life, which has aired on numerous PBS television stations, describes the elaborate operation this way:

In a process known as transcription, a molecular machine first unwinds a section of the DNA helix to expose the genetic instructions needed to assemble a specific protein molecule. Another machine then copies these instructions to form a molecule known as messenger RNA. When transcription is complete, the slender RNA strand carries the genetic information . . . out of the cell nucleus. The messenger RNA strand is directed to a two-part molecular factory called a ribosome. . . . Inside the ribosome, a molecular assembly line builds a specifically sequenced chain of amino acids. These amino acids are transported from other parts of the cell and then linked into chains often hundreds of units long. Their sequential determines the type of protein manufactured. When the chain is finished, it is moved from the ribosome to a barrel-shaped machine that helps fold it into the precise shape critical to its function. After the chain is folded into a protein, it is then released and shepherded by another molecular machine to the exact location where it is needed.

Where does the Information inside DNA come from?
This issue has caused all naturalistic accounts of the origin of life to break down, because it’s the critical and foundational question. If you can’t explain where the information comes from, you haven’t explained life, because it’s the information that makes the molecules into something that actually functions. The origin of information in DNA—which is necessary for life to begin—is best explained by an intelligent cause rather than any of the types of naturalistic causes that scientists typically use to explain biological phenomena.
We know from our experience that we can convey information with a twenty-six-letter alphabet, or twenty-two, or thirty—or even just two characters, like the zeros and ones used in the binary code in computers. One of the most extraordinary discoveries of the twentieth century was that DNA actually stores information—the detailed instructions for assembling proteins—in the form of a four-character digital code. The characters happen to be chemicals called adenine, guanine, cytosine, and thymine. Scientists represent them with the letters A, G, C, and T, and that’s appropriate because they function as alphabetic characters in the genetic text. Properly arranging those four ‘bases,’ as they’re called, will instruct the cell to build different sequences of amino acids, which are the building blocks of proteins. Different arrangements of characters yields different sequences of amino acids.

DNA as a library
The organism accesses the information that it needs from DNA so it can build some of its critical components. In DNA, there are long lines of A, C, G, and T’s that are precisely arranged in order to create protein structure and folding. To build one protein, you typically need 1,200 to 2,000 letters or bases—which is a lot of information.

There’s a certain level of folding that a protein has to have, called tertiary structure, that is necessary for it to perform a function. You don’t get tertiary structure in a protein unless you have at least seventy-five amino acids or so. That may be conservative. Now consider what you’d need for a protein molecule to form by chance. First, you need the right bonds between the amino acids. Second, amino acids come in right-handed and left-handed versions, and you’ve got to get only left-handed ones. Third, the amino acids must link up in a specified sequence, like letters in a sentence. Run the odds of these things falling into place on their own and you find that the probabilities of forming a rather short functional protein at random would be one chance in a hundred thousand trillion trillion trillion trillion trillion trillion trillion trillion trillion trillion. That’s a ten with 125 zeroes after it!
And that would only be one protein molecule—a minimally complex cell would need between three hundred and five hundred protein molecules. Plus, all of this would have to be accomplished in a mere 100 million years, which is the approximate window of time between the Earth cooling and the first microfossils we’ve found. To suggest chance against those odds is really to invoke a naturalistic miracle. It’s a confession of ignorance. It’s another way of saying, ‘We don’t know.’ And since the 1960s, scientists, to their credit, have been very reluctant to say that chance played any significant role in the origin of DNA or proteins—even though, as you say, it’s still unfortunately a live option in popular thinking.
One more example of how improbable it is for life to have evolved from nothing.
Research all the evidences, find the truth for yourself and remember….

Have an Intelligent Faith!!

-        -  Nelis