Life Is Designed to Fight Darwinism

Life knows all about Darwinism. That's why it is intelligently designed to resist it.
Neo-Darwinian theory teaches that mutations are random, then a process of "selection" chooses which ones to preserve (Darwin himself was bothered by the implicit personification in "natural selection"). Some mutations are random, for sure. No cell can anticipate where a cosmic ray will hit. How, then, can cells regulate mutations, turning on a "low mutation rate phenotype" under stress? In Current Biology, McDonald and team experimented with E. coli response to mutations. Their paper featured these 4 highlights:
The evolution of low mutation rates in mutator-founded populations • Nonmutators do not only evolve due to reduced genetic load compared to mutators; they can invade • Diploidy is found to be closely associated with reduction of the impact of the mutator phenotype • Genomes may influence mutation rates by initiating more high-fidelity replication early in S phase.
The authors believe that mutations are the source of "beneficial adaptive variation," but cannot deny they also produce "deleterious genetic load." When a cell invades a novel environment, it is able to switch on a "mutator phenotype" with a 10- to 100-fold increase in mutation rate. The fact that this "mutator allele" switches on is an indication that there's a functional purpose behind it. It's risky, because mutational load is likely to drive many of the cells extinct.
We find that after ∼6,700 generations, four out of eight experimental mutator lineshad evolved a decreased mutation rate. We provide evidence that theaccumulation of deleterious mutations leads to selection for reduced mutation rate clones in populations of mutators. (Emphasis added.)
The authors did not give any examples of a beneficial mutation. All they proved is that populations tend to "evolve" a decreased mutation rate, thereby cutting off the source of "beneficial adaptive variation" while saving themselves from "deleterious genetic load."
Defensive Block and Tackle
"Researchers demonstrate how 'interfering' RNA can block bacterial evolution" is the headline of a news release from Rockefeller University. As expected, the pro-Darwin press release speaks of "evolutionary tricks" and "instant evolution," but a close reading shows a designed mechanism for surviving under stress:
Bacteria may be simple creatures, but unlike "higher" organisms they have a neat evolutionary trick. When the going gets tough, they can simply pick up and incorporate a loose bit of genetic material from their environment. It's instant evolution, no time-consuming mutations required. This process, known ashorizontal gene transfer, is an important reason why nasty bacteria like pneumococci are often able to evade immune system attacks and antibiotic drugs.
Needless to say, "evolution" without "time-consuming mutations" is not the neo-Darwinian way. By picking up existing genetic information from the environment through horizontal gene transfer, the bacteria give evidence of design for surviving storms of misfortune:
"Transformation is something that bacteria use as a last resort," says Luciano Marraffini, head of Rockefeller's Laboratory of Bacteriology. "In a desperate attempt to stay alive under hostile conditions, they start incorporating whatever genes they can find into their chromosome in the hopes that they can quickly evolve out of trouble."
Michael Behe described in The Edge of Evolution how a cell under stress, like a city under siege, will do whatever it can to survive, throwing whatever is available at the enemy or accepting weapons from allies. If it survives, it has not become something better. It just avoided dying. The ability of a cell to accept or reject existing foreign DNA shows evidence of design for disaster preparedness.
Epistasis and Stasis
Click HERE to continue reading